7,853 research outputs found

    Book Review: "Quantum Theory as an Emergent Phenomenon", by Stephen L. Adler

    Full text link
    This is a book review of the book: "Quantum Theory as an Emergent Phenomenon", by Stephen L. Adler (Cambridge University Press - 2004)Comment: 3 pages, LaTe

    Collapse models: from theoretical foundations to experimental verifications

    Full text link
    The basic strategy underlying models of spontaneous wave function collapse (collapse models) is to modify the Schroedinger equation by including nonlinear stochastic terms, which tend to localize wave functions in space in a dynamical manner. These terms have negligible effects on microscopic systems-therefore their quantum behaviour is practically preserved. On the other end, since the strength of these new terms scales with the mass of the system, they become dominant at the macroscopic level, making sure that wave functions of macro-objects are always well-localized in space. We will review these basic features. By changing the dynamics of quantum systems, collapse models make predictions, which are different from standard quantum mechanical predictions. Although they are difficult to detect, we discuss the most relevant scenarios, where such deviations can be observedComment: 10 Pages. Invited Talk at the Heinz von Foerster Centenary International Conference on Self-Organization and Emergence: Emergent Quantum Mechanics (EmerQuM11). Nov. 10-13, 2011, Vienna, Austria. Proceedings to appear in J. Phys. (Conf. Series

    Dynamical Reduction Models: present status and future developments

    Get PDF
    We review the major achievements of the dynamical reduction program, showing why and how it provides a unified, consistent description of physical phenomena, from the microscopic quantum domain to the macroscopic classical one. We discuss the difficulties in generalizing the existing models in order to comprise also relativistic quantum field theories. We point out possible future lines of research, ranging from mathematical physics to phenomenology.Comment: 12 pages. Contribution to the Proceedings of the "Third International Workshop DICE2006", Castello di Piombino (Tuscany), September 11-15, 2006. Minor changes mad

    On the Electromagnetic Properties of Matter in Collapse Models

    Full text link
    We discuss the electromagnetic properties of both a charged free particle, and a charged particle bounded by an harmonic potential, within collapse models. By choosing a particularly simple, yet physically relevant, collapse model, and under only the dipole approximation, we are able to solve the equation of motion exactly. In this way, both the finite time and large time behavior can be analyzed accurately. We discovered new features, which did not appear in previous works on the same subject. Since, so far, the spontaneous photon emission process places the strongest upper bounds on the collapse parameters, our results call for a further analysis of this process for those atomic systems which can be employed in experimental tests of collapse models, as well as of quantum mechanics.Comment: 17 pages, LaTeX, updated version with minor change

    On the spontaneous emission of electromagnetic radiation in the CSL model

    Full text link
    Spontaneous photon emission in the Continuous Spontaneous Localization (CSL) model is studied one more time. In the CSL model each particle interacts with a noise field that induces the collapse of its wave function. As a consequence of this interaction, when the particle is electrically charged, it radiates. As discussed in [1], the formula for the emission rate, to first perturbative order, contains two terms: One is proportional to the Fourier component of the noise field at the same frequency as that of the emitted photon and one is proportional to the zero Fourier component of the noise field. As discussed in previous works, this second term seems unphysical. In [1], it was shown that the unphysical term disappears when the noises is confined to a bounded region and the final particle's state is a wave packet. Here we investigate the origin of the unphysical term and why it vanishes according to the previous prescription. For this purpose, the electrodynamic part of the equation of motion is solved exactly while the part due to the noise is treated perturbatively. We show that the unphysical term is connected to exponentially decaying function of time which dies out in the large time limit, however, approximates to 1 in the first perturbative order in the electromagnetic field.Comment: 10 pages, 1 figure, LaTe

    The quantum theory of measurement within dynamical reduction models

    Get PDF
    We analyze in mathematical detail, within the framework of the QMUPL model of spontaneous wave function collapse, the von Neumann measurement scheme for the measurement of a 1/2 spin particle. We prove that, according to the equation of the model: i) throughout the whole measurement process, the pointer of the measuring device is always perfectly well localized in space; ii) the probabilities for the possible outcomes are distributed in agreement with the Born probability rule; iii) at the end of the measurement the state of the microscopic system has collapsed to the eigenstate corresponding to the measured eigenvalue. This analysis shows rigorously how dynamical reduction models provide a consistent solution to the measurement problem of quantum mechanics.Comment: 24 pages, RevTeX. Minor changes mad
    • …
    corecore